Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Predictive Quantile Regression with High-Dimensional Predictors: The Variable Screening Approach (2410.15097v1)

Published 19 Oct 2024 in econ.EM

Abstract: This paper advances a variable screening approach to enhance conditional quantile forecasts using high-dimensional predictors. We have refined and augmented the quantile partial correlation (QPC)-based variable screening proposed by Ma et al. (2017) to accommodate $\beta$-mixing time-series data. Our approach is inclusive of i.i.d scenarios but introduces new convergence bounds for time-series contexts, suggesting the performance of QPC-based screening is influenced by the degree of time-series dependence. Through Monte Carlo simulations, we validate the effectiveness of QPC under weak dependence. Our empirical assessment of variable selection for growth-at-risk (GaR) forecasting underscores the method's advantages, revealing that specific labor market determinants play a pivotal role in forecasting GaR. While prior empirical research has predominantly considered a limited set of predictors, we employ the comprehensive Fred-QD dataset, retaining a richer breadth of information for GaR forecasts.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com