Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 11 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 30 tok/s Pro
2000 character limit reached

CalibQuant: 1-Bit KV Cache Quantization for Multimodal LLMs (2502.14882v2)

Published 15 Feb 2025 in cs.CV

Abstract: Multimodal LLMs (MLLMs) have demonstrated remarkable performance across diverse applications. However, their computational overhead during deployment remains a critical bottleneck. While Key-Value (KV) caching effectively trades memory for computation to enhance inference efficiency, the growing memory footprint from extensive KV caches significantly reduces throughput and restricts prolonged deployment on memory-constrained GPU devices. To address this challenge, we propose CalibQuant, a simple yet highly effective visual quantization strategy that drastically reduces both memory and computational overhead. Specifically, CalibQuant introduces an extreme 1-bit quantization scheme, complemented by novel post-scaling and calibration techniques tailored to the intrinsic patterns of KV caches, thereby ensuring high efficiency without compromising model performance. Leveraging Triton for runtime optimization, we achieve a 10x throughput increase on InternVL models. Our method is designed to be plug-and-play, seamlessly integrating with various existing MLLMs without requiring architectural changes. Extensive experiments confirm that our approach significantly reduces memory usage while maintaining computational efficiency and preserving multimodal capabilities. Codes are available at https://github.com/insuhan/calibquant.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com