Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On linguistic subsets of groups and monoids (2502.14329v2)

Published 20 Feb 2025 in math.GR and cs.FL

Abstract: We study subsets of groups and monoids defined by language-theoretic means, generalizing the classical approach to the word problem. We expand on results by Herbst from 1991 to a more general setting, and for a class of languages $\mathbf{C}$ we define the classes of $\mathbf{C}\forall$-flat and $\mathbf{C}\exists$-flat groups. We prove several closure results for these classes of groups, prove a connection with the word problem, and characterize $\mathbf{C}\forall$-flat groups for several classes of languages. In general, we prove that the class of $\mathbf{C}\forall$-flat groups is a strict subclass of the class of groups with word problem in $\mathbf{C}$, including for the class $\mathbf{REC}$ of recursive languages, for which $\mathbf{C}\forall$-flatness for a group resp. monoid is proved to be equivalent to the decidability of the subgroup membership problem resp. the submonoid membership problem. We provide a number of examples, including the Tarski monsters of Ol'shanskii, showing the difficulty of characterizing $\mathbf{C}\exists$-flat groups. As an application of our general methods, we also prove in passing that if $\mathbf{C}$ is a full semi-$\mathrm{AFL}$, then the class of epi-$\mathbf{C}$ groups is closed under taking finite index subgroups. This answers a question recently posed by Al Kohli, Bleak & Elliott.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com