Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Word Problem for Free Products of Semigroups and Monoids (2112.10665v1)

Published 20 Dec 2021 in math.GR and cs.FL

Abstract: We study the language-theoretic aspects of the word problem, in the sense of Duncan & Gilman, of free products of semigroups and monoids. First, we provide algebraic tools for studying classes of languages known as super-AFLs, which generalise e.g. the context-free or the indexed languages. When $\mathcal{C}$ is a super-AFL closed under reversal, we prove that the semigroup (monoid) free product of two semigroups (resp. monoids) with word problem in $\mathcal{C}$ also has word problem in $\mathcal{C}$. This recovers and generalises a recent result by Brough, Cain & Pfeiffer that the class of context-free semigroups (monoids) is closed under taking free products. As a group-theoretic corollary, we deduce that the word problem of the (group) free product of two groups with word problem in $\mathcal{C}$ is also in $\mathcal{C}$. As a particular case, we find that the free product of two groups with indexed word problem has indexed word problem.

Citations (4)

Summary

We haven't generated a summary for this paper yet.