Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 94 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 13 tok/s
GPT-5 High 17 tok/s Pro
GPT-4o 101 tok/s
GPT OSS 120B 460 tok/s Pro
Kimi K2 198 tok/s Pro
2000 character limit reached

Performance Comparison of Graph Representations Which Support Dynamic Graph Updates (2502.13862v1)

Published 19 Feb 2025 in cs.DC

Abstract: Research in graph-structured data has grown rapidly due to graphs' ability to represent complex real-world information and capture intricate relationships, particularly as many real-world graphs evolve dynamically through edge/vertex insertions and deletions. This has spurred interest in programming frameworks for managing, maintaining, and processing such dynamic graphs. In this report, we evaluate the performance of PetGraph (Rust), Stanford Network Analysis Platform (SNAP), SuiteSparse:GraphBLAS, cuGraph, Aspen, and our custom implementation in tasks including loading graphs from disk to memory, cloning loaded graphs, applying in-place edge deletions/insertions, and performing a simple iterative graph traversal algorithm. Our implementation demonstrates significant performance improvements: it outperforms PetGraph, SNAP, SuiteSparse:GraphBLAS, cuGraph, and Aspen by factors of 177x, 106x, 76x, 17x, and 3.3x in graph loading; 20x, 235x, 0.24x, 1.3x, and 0x in graph cloning; 141x/45x, 44x/25x, 13x/11x, 28x/34x, and 3.5x/2.2x in edge deletions/insertions; and 67x/63x, 86x/86x, 2.5x/2.6x, 0.25x/0.24x, and 1.3x/1.3x in traversal on updated graphs with deletions/insertions.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

X Twitter Logo Streamline Icon: https://streamlinehq.com