Performance Comparison of Graph Representations Which Support Dynamic Graph Updates (2502.13862v1)
Abstract: Research in graph-structured data has grown rapidly due to graphs' ability to represent complex real-world information and capture intricate relationships, particularly as many real-world graphs evolve dynamically through edge/vertex insertions and deletions. This has spurred interest in programming frameworks for managing, maintaining, and processing such dynamic graphs. In this report, we evaluate the performance of PetGraph (Rust), Stanford Network Analysis Platform (SNAP), SuiteSparse:GraphBLAS, cuGraph, Aspen, and our custom implementation in tasks including loading graphs from disk to memory, cloning loaded graphs, applying in-place edge deletions/insertions, and performing a simple iterative graph traversal algorithm. Our implementation demonstrates significant performance improvements: it outperforms PetGraph, SNAP, SuiteSparse:GraphBLAS, cuGraph, and Aspen by factors of 177x, 106x, 76x, 17x, and 3.3x in graph loading; 20x, 235x, 0.24x, 1.3x, and 0x in graph cloning; 141x/45x, 44x/25x, 13x/11x, 28x/34x, and 3.5x/2.2x in edge deletions/insertions; and 67x/63x, 86x/86x, 2.5x/2.6x, 0.25x/0.24x, and 1.3x/1.3x in traversal on updated graphs with deletions/insertions.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.