Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 102 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 30 tok/s
GPT-5 High 27 tok/s Pro
GPT-4o 110 tok/s
GPT OSS 120B 475 tok/s Pro
Kimi K2 203 tok/s Pro
2000 character limit reached

$L^2$ Stability of Simple Shocks for Spatially Heterogeneous Conservation Laws (2502.13687v1)

Published 19 Feb 2025 in math.AP

Abstract: In this paper, we consider scalar conservation laws with smoothly varying spatially heterogeneous flux that is convex in the conserved variable. We show that under certain assumptions, a shock wave connecting two constant states emerges in finite time for all $L{\infty}$ initial data satisfying the same far-field conditions. Under an additional assumption on the mixed partial derivative of the flux, we establish the stability of these simple shock profiles with respect to $L2$ perturbations. The main tools we use are Dafermos' generalised characteristics for the evolution analysis and the relative entropy method for stability.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.