Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 100 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 29 tok/s
GPT-5 High 29 tok/s Pro
GPT-4o 103 tok/s
GPT OSS 120B 480 tok/s Pro
Kimi K2 215 tok/s Pro
2000 character limit reached

LSR-Adapt: Ultra-Efficient Parameter Tuning with Matrix Low Separation Rank Kernel Adaptation (2502.13568v1)

Published 19 Feb 2025 in cs.LG and cs.CL

Abstract: Imposing an effective structural assumption on neural network weight matrices has been the major paradigm for designing Parameter-Efficient Fine-Tuning (PEFT) systems for adapting modern large pre-trained models to various downstream tasks. However, low rank based adaptation has become increasingly challenging due to the sheer scale of modern LLMs. In this paper, we propose an effective kernelization to further reduce the number of parameters required for adaptation tasks. Specifically, from the classical idea in numerical analysis regarding matrix Low-Separation-Rank (LSR) representations, we develop a kernel using this representation for the low rank adapter matrices of the linear layers from large networks, named the Low Separation Rank Adaptation (LSR-Adapt) kernel. With the ultra-efficient kernel representation of the low rank adapter matrices, we manage to achieve state-of-the-art performance with even higher accuracy with almost half the number of parameters as compared to conventional low rank based methods. This structural assumption also opens the door to further GPU-side optimizations due to the highly parallelizable nature of Kronecker computations.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)