Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 103 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 27 tok/s
GPT-5 High 37 tok/s Pro
GPT-4o 92 tok/s
GPT OSS 120B 467 tok/s Pro
Kimi K2 241 tok/s Pro
2000 character limit reached

Reproducing NevIR: Negation in Neural Information Retrieval (2502.13506v4)

Published 19 Feb 2025 in cs.IR

Abstract: Negation is a fundamental aspect of human communication, yet it remains a challenge for LLMs (LMs) in Information Retrieval (IR). Despite the heavy reliance of modern neural IR systems on LMs, little attention has been given to their handling of negation. In this study, we reproduce and extend the findings of NevIR, a benchmark study that revealed most IR models perform at or below the level of random ranking when dealing with negation. We replicate NevIR's original experiments and evaluate newly developed state-of-the-art IR models. Our findings show that a recently emerging category-listwise LLM re-rankers-outperforms other models but still underperforms human performance. Additionally, we leverage ExcluIR, a benchmark dataset designed for exclusionary queries with extensive negation, to assess the generalisability of negation understanding. Our findings suggest that fine-tuning on one dataset does not reliably improve performance on the other, indicating notable differences in their data distributions. Furthermore, we observe that only cross-encoders and listwise LLM re-rankers achieve reasonable performance across both negation tasks.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run paper prompts using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube