Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 54 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

Hybrid Machine Learning Models for Intrusion Detection in IoT: Leveraging a Real-World IoT Dataset (2502.12382v1)

Published 17 Feb 2025 in cs.CR and cs.AI

Abstract: The rapid growth of the Internet of Things (IoT) has revolutionized industries, enabling unprecedented connectivity and functionality. However, this expansion also increases vulnerabilities, exposing IoT networks to increasingly sophisticated cyberattacks. Intrusion Detection Systems (IDS) are crucial for mitigating these threats, and recent advancements in Machine Learning (ML) offer promising avenues for improvement. This research explores a hybrid approach, combining several standalone ML models such as Random Forest (RF), XGBoost, K-Nearest Neighbors (KNN), and AdaBoost, in a voting-based hybrid classifier for effective IoT intrusion detection. This ensemble method leverages the strengths of individual algorithms to enhance accuracy and address challenges related to data complexity and scalability. Using the widely-cited IoT-23 dataset, a prominent benchmark in IoT cybersecurity research, we evaluate our hybrid classifiers for both binary and multi-class intrusion detection problems, ensuring a fair comparison with existing literature. Results demonstrate that our proposed hybrid models, designed for robustness and scalability, outperform standalone approaches in IoT environments. This work contributes to the development of advanced, intelligent IDS frameworks capable of addressing evolving cyber threats.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.