Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 28 tok/s
GPT-5 High 35 tok/s Pro
GPT-4o 94 tok/s
GPT OSS 120B 476 tok/s Pro
Kimi K2 190 tok/s Pro
2000 character limit reached

Private Synthetic Graph Generation and Fused Gromov-Wasserstein Distance (2502.11778v1)

Published 17 Feb 2025 in stat.ML, cs.DS, cs.LG, and math.PR

Abstract: Networks are popular for representing complex data. In particular, differentially private synthetic networks are much in demand for method and algorithm development. The network generator should be easy to implement and should come with theoretical guarantees. Here we start with complex data as input and jointly provide a network representation as well as a synthetic network generator. Using a random connection model, we devise an effective algorithmic approach for generating attributed synthetic graphs which is $\epsilon$-differentially private at the vertex level, while preserving utility under an appropriate notion of distance which we develop. We provide theoretical guarantees for the accuracy of the private synthetic graphs using the fused Gromov-Wasserstein distance, which extends the Wasserstein metric to structured data. Our method draws inspiration from the PSMM method of \citet{he2023}.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets