Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 199 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Intelligent Mobile AI-Generated Content Services via Interactive Prompt Engineering and Dynamic Service Provisioning (2502.11386v1)

Published 17 Feb 2025 in cs.NI and cs.LG

Abstract: Due to massive computational demands of large generative models, AI-Generated Content (AIGC) can organize collaborative Mobile AIGC Service Providers (MASPs) at network edges to provide ubiquitous and customized content generation for resource-constrained users. However, such a paradigm faces two significant challenges: 1) raw prompts (i.e., the task description from users) often lead to poor generation quality due to users' lack of experience with specific AIGC models, and 2) static service provisioning fails to efficiently utilize computational and communication resources given the heterogeneity of AIGC tasks. To address these challenges, we propose an intelligent mobile AIGC service scheme. Firstly, we develop an interactive prompt engineering mechanism that leverages a LLM to generate customized prompt corpora and employs Inverse Reinforcement Learning (IRL) for policy imitation through small-scale expert demonstrations. Secondly, we formulate a dynamic mobile AIGC service provisioning problem that jointly optimizes the number of inference trials and transmission power allocation. Then, we propose the Diffusion-Enhanced Deep Deterministic Policy Gradient (D3PG) algorithm to solve the problem. By incorporating the diffusion process into Deep Reinforcement Learning (DRL) architecture, the environment exploration capability can be improved, thus adapting to varying mobile AIGC scenarios. Extensive experimental results demonstrate that our prompt engineering approach improves single-round generation success probability by 6.3 times, while D3PG increases the user service experience by 67.8% compared to baseline DRL approaches.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube