Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 98 tok/s Pro
GPT OSS 120B 424 tok/s Pro
Kimi K2 164 tok/s Pro
2000 character limit reached

Exploring information geometry: Recent Advances and Connections to Topological Field Theory (2502.11188v1)

Published 16 Feb 2025 in math.DG, cs.IT, math.AG, and math.IT

Abstract: This introductory text arises from a lecture given in G\"oteborg, Sweden, given by the first author and is intended for undergraduate students, as well as for any mathematically inclined reader wishing to explore a synthesis of ideas connecting geometry and statistics. At its core, this work seeks to illustrate the profound and yet natural interplay between differential geometry, probability theory, and the rich algebraic structures encoded in (pre-)Frobenius manifolds. The exposition is structured into three principal parts. The first part provides a concise introduction to differential topology and geometry, emphasizing the role of smooth manifolds, connections, and curvature in the formulation of geometric structures. The second part is devoted to probability, measures, and statistics, where the notion of a probability space is refined into a geometric object, thus paving the way for a deeper mathematical understanding of statistical models. Finally, in the third part, we introduce (pre-)Frobenius manifolds, revealing their surprising connection to exponential families of probability distributions and, discuss more broadly, their role in the geometry of information. At the end of those three parts the reader will find stimulating exercises. By bringing together these seemingly distant disciplines, we aim to highlight the natural emergence of geometric structures in statistical theory. This work does not seek to be exhaustive but rather to provide the reader with a pathway into a domain of mathematics that is still in its formative stages, where many fundamental questions remain open. The text is accessible without requiring advanced prerequisites and should serve as an invitation to further exploration.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube