Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 100 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 29 tok/s
GPT-5 High 29 tok/s Pro
GPT-4o 103 tok/s
GPT OSS 120B 480 tok/s Pro
Kimi K2 215 tok/s Pro
2000 character limit reached

SWA-LDM: Toward Stealthy Watermarks for Latent Diffusion Models (2502.10495v1)

Published 14 Feb 2025 in cs.CR, cs.AI, cs.CV, and cs.LG

Abstract: In the rapidly evolving landscape of image generation, Latent Diffusion Models (LDMs) have emerged as powerful tools, enabling the creation of highly realistic images. However, this advancement raises significant concerns regarding copyright infringement and the potential misuse of generated content. Current watermarking techniques employed in LDMs often embed constant signals to the generated images that compromise their stealthiness, making them vulnerable to detection by malicious attackers. In this paper, we introduce SWA-LDM, a novel approach that enhances watermarking by randomizing the embedding process, effectively eliminating detectable patterns while preserving image quality and robustness. Our proposed watermark presence attack reveals the inherent vulnerabilities of existing latent-based watermarking methods, demonstrating how easily these can be exposed. Through comprehensive experiments, we validate that SWA-LDM not only fortifies watermark stealthiness but also maintains competitive performance in watermark robustness and visual fidelity. This work represents a pivotal step towards securing LDM-generated images against unauthorized use, ensuring both copyright protection and content integrity in an era where digital image authenticity is paramount.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.