Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 41 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Position: Stop Acting Like Language Model Agents Are Normal Agents (2502.10420v1)

Published 4 Feb 2025 in cs.AI and cs.CL

Abstract: LLM Agents (LMAs) are increasingly treated as capable of autonomously navigating interactions with humans and tools. Their design and deployment tends to presume they are normal agents capable of sustaining coherent goals, adapting across contexts and acting with a measure of intentionality. These assumptions are critical to prospective use cases in industrial, social and governmental settings. But LMAs are not normal agents. They inherit the structural problems of the LLMs around which they are built: hallucinations, jailbreaking, misalignment and unpredictability. In this Position paper we argue LMAs should not be treated as normal agents, because doing so leads to problems that undermine their utility and trustworthiness. We enumerate pathologies of agency intrinsic to LMAs. Despite scaffolding such as external memory and tools, they remain ontologically stateless, stochastic, semantically sensitive, and linguistically intermediated. These pathologies destabilise the ontological properties of LMAs including identifiability, continuity, persistence and and consistency, problematising their claim to agency. In response, we argue LMA ontological properties should be measured before, during and after deployment so that the negative effects of pathologies can be mitigated.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.