Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 23 tok/s
GPT-5 High 19 tok/s Pro
GPT-4o 108 tok/s
GPT OSS 120B 465 tok/s Pro
Kimi K2 179 tok/s Pro
2000 character limit reached

Interpretable Concept-based Deep Learning Framework for Multimodal Human Behavior Modeling (2502.10145v1)

Published 14 Feb 2025 in cs.CV and cs.MM

Abstract: In the contemporary era of intelligent connectivity, Affective Computing (AC), which enables systems to recognize, interpret, and respond to human behavior states, has become an integrated part of many AI systems. As one of the most critical components of responsible AI and trustworthiness in all human-centered systems, explainability has been a major concern in AC. Particularly, the recently released EU General Data Protection Regulation requires any high-risk AI systems to be sufficiently interpretable, including biometric-based systems and emotion recognition systems widely used in the affective computing field. Existing explainable methods often compromise between interpretability and performance. Most of them focus only on highlighting key network parameters without offering meaningful, domain-specific explanations to the stakeholders. Additionally, they also face challenges in effectively co-learning and explaining insights from multimodal data sources. To address these limitations, we propose a novel and generalizable framework, namely the Attention-Guided Concept Model (AGCM), which provides learnable conceptual explanations by identifying what concepts that lead to the predictions and where they are observed. AGCM is extendable to any spatial and temporal signals through multimodal concept alignment and co-learning, empowering stakeholders with deeper insights into the model's decision-making process. We validate the efficiency of AGCM on well-established Facial Expression Recognition benchmark datasets while also demonstrating its generalizability on more complex real-world human behavior understanding applications.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube