Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 27 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 117 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

Counterfactual Explanations as Plans (2502.09205v1)

Published 13 Feb 2025 in cs.AI and cs.LO

Abstract: There has been considerable recent interest in explainability in AI, especially with black-box machine learning models. As correctly observed by the planning community, when the application at hand is not a single-shot decision or prediction, but a sequence of actions that depend on observations, a richer notion of explanations are desirable. In this paper, we look to provide a formal account of ``counterfactual explanations," based in terms of action sequences. We then show that this naturally leads to an account of model reconciliation, which might take the form of the user correcting the agent's model, or suggesting actions to the agent's plan. For this, we will need to articulate what is true versus what is known, and we appeal to a modal fragment of the situation calculus to formalise these intuitions. We consider various settings: the agent knowing partial truths, weakened truths and having false beliefs, and show that our definitions easily generalize to these different settings.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)