Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

MIH-TCCT: Mitigating Inconsistent Hallucinations in LLMs via Event-Driven Text-Code Cyclic Training (2502.08904v3)

Published 13 Feb 2025 in cs.AI

Abstract: Recent methodologies utilizing synthetic datasets have aimed to address inconsistent hallucinations in LLMs; however,these approaches are primarily tailored to specific tasks, limiting their generalizability. Inspired by the strong performance of code-trained models in logic-intensive domains, we propose a novel framework that leverages event-based text to generate corresponding code and employs cyclic training to transfer the logical consistency of code to natural language effectively. Our method significantly reduces inconsistent hallucinations across three leading LLMs and two categories of natural language tasks while maintaining overall performance. This framework effectively alleviates hallucinations without necessitating adaptation to downstream tasks, demonstrating generality and providing new perspectives to tackle the challenge of inconsistent hallucinations.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets