Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Counterexample Guided Program Repair Using Zero-Shot Learning and MaxSAT-based Fault Localization (2502.07786v1)

Published 19 Dec 2024 in cs.SE and cs.AI

Abstract: Automated Program Repair (APR) for introductory programming assignments (IPAs) is motivated by the large number of student enroLLMents in programming courses each year. Since providing feedback on IPAs requires substantial time and effort from faculty, personalized feedback often involves suggesting fixes to students' programs. Formal Methods (FM)-based semantic repair approaches, check a program's execution against a test suite or reference solution, are effective but limited. These tools excel at identifying buggy parts but can only fix programs if the correct implementation and the faulty one share the same control flow graph. Conversely, LLMs are used for APR but often make extensive instead of minimal rewrites. This leads to more invasive fixes, making it harder for students to learn from their mistakes. In summary, LLMs excel at completing strings, while FM-based fault localization excel at identifying buggy parts of a program. In this paper, we propose a novel approach that combines the strengths of both FM-based fault localization and LLMs, via zero-shot learning, to enhance APR for IPAs. Our method uses MaxSAT-based fault localization to identify buggy parts of a program, then presents the LLM with a program sketch devoid of these buggy statements. This hybrid approach follows a CEGIS loop to iteratively refine the program. We ask the LLM to synthesize the missing parts, which are then checked against a test suite. If the suggested program is incorrect, a counterexample from the test suite is fed back to the LLM. Our experiments show that our counterexample guided approach, using MaxSAT-based bug-free program sketches, significantly improves the repair capabilities of all six evaluated LLMs. This method allows LLMs to repair more programs with smaller fixes, outperforming other configurations and state-of-the-art symbolic program repair tools.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube