Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 103 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 27 tok/s
GPT-5 High 37 tok/s Pro
GPT-4o 92 tok/s
GPT OSS 120B 467 tok/s Pro
Kimi K2 241 tok/s Pro
2000 character limit reached

Don't Just Demo, Teach Me the Principles: A Principle-Based Multi-Agent Prompting Strategy for Text Classification (2502.07165v1)

Published 11 Feb 2025 in cs.CL and cs.AI

Abstract: We present PRINCIPLE-BASED PROMPTING, a simple but effective multi-agent prompting strategy for text classification. It first asks multiple LLM agents to independently generate candidate principles based on analysis of demonstration samples with or without labels, consolidates them into final principles via a finalizer agent, and then sends them to a classifier agent to perform downstream classification tasks. Extensive experiments on binary and multi-class classification datasets with different sizes of LLMs show that our approach not only achieves substantial performance gains (1.55% - 19.37%) over zero-shot prompting on macro-F1 score but also outperforms other strong baselines (CoT and stepback prompting). Principles generated by our approach help LLMs perform better on classification tasks than human crafted principles on two private datasets. Our multi-agent PRINCIPLE-BASED PROMPTING approach also shows on-par or better performance compared to demonstration-based few-shot prompting approaches, yet with substantially lower inference costs. Ablation studies show that label information and the multi-agent cooperative LLM framework play an important role in generating high-quality principles to facilitate downstream classification tasks.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run paper prompts using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.