Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 117 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 469 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Exploring Model Invariance with Discrete Search for Ultra-Low-Bit Quantization (2502.06844v1)

Published 6 Feb 2025 in cs.LG, cs.AI, and cs.CL

Abstract: LLMs have been increasing in size due to their success in a wide range of applications. This calls for a pressing need to reduce memory usage to make them more accessible. Post-training quantization is a popular technique which uses fewer bits (e.g., 4--8 bits) to represent the model without retraining it. However, it remains a challenging task to perform quantization in an ultra-low-bit setup (e.g., 2 bits). In this paper, we propose InvarExplore, a unified framework that systematically explores different model invariance at the same time, allowing us to take advantage of the synergy between each type of invariance. Importantly, InvarExplore features a discrete search algorithm that enables us to explore permutation invariance, which is under-studied as it cannot be optimized with gradient-based methods. Results show that InvarExplore is compatible with existing state-of-the-art methods, achieving an add-on performance improvement over strong competing methods.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.