Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 92 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 98 tok/s Pro
Kimi K2 209 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

LpBound: Pessimistic Cardinality Estimation using $\ell_p$-Norms of Degree Sequences (2502.05912v1)

Published 9 Feb 2025 in cs.DB

Abstract: Cardinality estimation is the problem of estimating the size of the output of a query, without actually evaluating the query. The cardinality estimator is a critical piece of a query optimizer, and is often the main culprit when the optimizer chooses a poor plan. This paper introduces LpBound, a pessimistic cardinality estimator for multijoin queries (acyclic or cyclic) with selection predicates and group-by clauses. LpBound computes a guaranteed upper bound on the size of the query output using simple statistics on the input relations, consisting of $\ell_p$-norms of degree sequences. The bound is the optimal solution of a linear program whose constraints encode data statistics and Shannon inequalities. We introduce two optimizations that exploit the structure of the query in order to speed up the estimation time and make LpBound practical. We experimentally evaluate LpBound against a range of traditional, pessimistic, and machine learning-based estimators on the JOB, STATS, and subgraph matching benchmarks. Our main finding is that LpBound can be orders of magnitude more accurate than traditional estimators used in mainstream open-source and commercial database systems. Yet it has comparable low estimation time and space requirements. When injected the estimates of LpBound, Postgres derives query plans at least as good as those derived using the true cardinalities.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube