FlashCheck: Exploration of Efficient Evidence Retrieval for Fast Fact-Checking (2502.05803v2)
Abstract: The advances in digital tools have led to the rampant spread of misinformation. While fact-checking aims to combat this, manual fact-checking is cumbersome and not scalable. It is essential for automated fact-checking to be efficient for aiding in combating misinformation in real-time and at the source. Fact-checking pipelines primarily comprise a knowledge retrieval component which extracts relevant knowledge to fact-check a claim from large knowledge sources like Wikipedia and a verification component. The existing works primarily focus on the fact-verification part rather than evidence retrieval from large data collections, which often face scalability issues for practical applications such as live fact-checking. In this study, we address this gap by exploring various methods for indexing a succinct set of factual statements from large collections like Wikipedia to enhance the retrieval phase of the fact-checking pipeline. We also explore the impact of vector quantization to further improve the efficiency of pipelines that employ dense retrieval approaches for first-stage retrieval. We study the efficiency and effectiveness of the approaches on fact-checking datasets such as HoVer and WiCE, leveraging Wikipedia as the knowledge source. We also evaluate the real-world utility of the efficient retrieval approaches by fact-checking 2024 presidential debate and also open source the collection of claims with corresponding labels identified in the debate. Through a combination of indexed facts together with Dense retrieval and Index compression, we achieve up to a 10.0x speedup on CPUs and more than a 20.0x speedup on GPUs compared to the classical fact-checking pipelines over large collections.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.