Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 54 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

Evaluating Differential Privacy on Correlated Datasets Using Pointwise Maximal Leakage (2502.05516v1)

Published 8 Feb 2025 in cs.CR, cs.IT, and math.IT

Abstract: Data-driven advancements significantly contribute to societal progress, yet they also pose substantial risks to privacy. In this landscape, differential privacy (DP) has become a cornerstone in privacy preservation efforts. However, the adequacy of DP in scenarios involving correlated datasets has sometimes been questioned and multiple studies have hinted at potential vulnerabilities. In this work, we delve into the nuances of applying DP to correlated datasets by leveraging the concept of pointwise maximal leakage (PML) for a quantitative assessment of information leakage. Our investigation reveals that DP's guarantees can be arbitrarily weak for correlated databases when assessed through the lens of PML. More precisely, we prove the existence of a pure DP mechanism with PML levels arbitrarily close to that of a mechanism which releases individual entries from a database without any perturbation. By shedding light on the limitations of DP on correlated datasets, our work aims to foster a deeper understanding of subtle privacy risks and highlight the need for the development of more effective privacy-preserving mechanisms tailored to diverse scenarios.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube