Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 34 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Can Diffusion Models Learn Hidden Inter-Feature Rules Behind Images? (2502.04725v1)

Published 7 Feb 2025 in cs.CV and cs.AI

Abstract: Despite the remarkable success of diffusion models (DMs) in data generation, they exhibit specific failure cases with unsatisfactory outputs. We focus on one such limitation: the ability of DMs to learn hidden rules between image features. Specifically, for image data with dependent features ($\mathbf{x}$) and ($\mathbf{y}$) (e.g., the height of the sun ($\mathbf{x}$) and the length of the shadow ($\mathbf{y}$)), we investigate whether DMs can accurately capture the inter-feature rule ($p(\mathbf{y}|\mathbf{x})$). Empirical evaluations on mainstream DMs (e.g., Stable Diffusion 3.5) reveal consistent failures, such as inconsistent lighting-shadow relationships and mismatched object-mirror reflections. Inspired by these findings, we design four synthetic tasks with strongly correlated features to assess DMs' rule-learning abilities. Extensive experiments show that while DMs can identify coarse-grained rules, they struggle with fine-grained ones. Our theoretical analysis demonstrates that DMs trained via denoising score matching (DSM) exhibit constant errors in learning hidden rules, as the DSM objective is not compatible with rule conformity. To mitigate this, we introduce a common technique - incorporating additional classifier guidance during sampling, which achieves (limited) improvements. Our analysis reveals that the subtle signals of fine-grained rules are challenging for the classifier to capture, providing insights for future exploration.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.