Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 109 tok/s Pro
Kimi K2 181 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Idioms: Neural Decompilation With Joint Code and Type Definition Prediction (2502.04536v2)

Published 6 Feb 2025 in cs.SE and cs.CR

Abstract: Decompilers are important tools for reverse engineers that help them analyze software at a higher level of abstraction than assembly code. Unfortunately, because compilation is lossy, deterministic decompilers produce code that is missing many of the details that make source code readable in the first place, like variable names and types. Neural decompilers, on the other hand, offer the ability to statistically fill in these details. Existing work in neural decompilation, however, suffers from substantial limitations that preclude its use on real code, such as the inability to define composite types, which is essential to fully specify function semantics. In this work, we introduce a new dataset, Realtype, that includes substantially more complicated and realistic types than existing neural decompilation benchmarks, and Idioms, a new neural decompilation approach to finetune any LLM into a neural decompiler capable of generating the appropriate user-defined type definitions alongside the decompiled code. We show that our approach yields state-of-the-art results in neural decompilation. On the most challenging existing benchmark, ExeBench, our model achieves 54.4% accuracy vs. 46.3% for LLM4Decompile and 37.5% for Nova; on Realtype, our model performs at least 95% better.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube