Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 73 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 115 tok/s Pro
Kimi K2 226 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Robust Probabilistic Model Checking with Continuous Reward Domains (2502.04530v1)

Published 6 Feb 2025 in cs.AI, cs.FL, and cs.LG

Abstract: Probabilistic model checking traditionally verifies properties on the expected value of a measure of interest. This restriction may fail to capture the quality of service of a significant proportion of a system's runs, especially when the probability distribution of the measure of interest is poorly represented by its expected value due to heavy-tail behaviors or multiple modalities. Recent works inspired by distributional reinforcement learning use discrete histograms to approximate integer reward distribution, but they struggle with continuous reward space and present challenges in balancing accuracy and scalability. We propose a novel method for handling both continuous and discrete reward distributions in Discrete Time Markov Chains using moment matching with Erlang mixtures. By analytically deriving higher-order moments through Moment Generating Functions, our method approximates the reward distribution with theoretically bounded error while preserving the statistical properties of the true distribution. This detailed distributional insight enables the formulation and robust model checking of quality properties based on the entire reward distribution function, rather than restricting to its expected value. We include a theoretical foundation ensuring bounded approximation errors, along with an experimental evaluation demonstrating our method's accuracy and scalability in practical model-checking problems.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube