Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Controlled LLM Decoding via Discrete Auto-regressive Biasing (2502.03685v1)

Published 6 Feb 2025 in cs.CL, cs.LG, and stat.ML

Abstract: Controlled text generation allows for enforcing user-defined constraints on LLM outputs, an increasingly important field as LLMs become more prevalent in everyday life. One common approach uses energy-based decoding, which defines a target distribution through an energy function that combines multiple constraints into a weighted average. However, these methods often struggle to balance fluency with constraint satisfaction, even with extensive tuning of the energy function's coefficients. In this paper, we identify that this suboptimal balance arises from sampling in continuous space rather than the natural discrete space of text tokens. To address this, we propose Discrete Auto-regressive Biasing, a controlled decoding algorithm that leverages gradients while operating entirely in the discrete text domain. Specifically, we introduce a new formulation for controlled text generation by defining a joint distribution over the generated sequence and an auxiliary bias sequence. To efficiently sample from this joint distribution, we propose a Langevin-within-Gibbs sampling algorithm using gradient-based discrete MCMC. Our method significantly improves constraint satisfaction while maintaining comparable or better fluency, all with even lower computational costs. We demonstrate the advantages of our controlled decoding method on sentiment control, language detoxification, and keyword-guided generation.

Summary

We haven't generated a summary for this paper yet.