Model-Free Predictive Control: Introductory Algebraic Calculations, and a Comparison with HEOL and ANNs (2502.00443v2)
Abstract: Model predictive control (MPC) is a popular control engineering practice, but requires a sound knowledge of the model. Model-free predictive control (MFPC), a burning issue today, also related to reinforcement learning (RL) in AI, is reformulated here via a linear differential equation with constant coefficients, thanks to a new perspective on optimal control combined with recent advances in the field of model-free control (MFC). It is replacing Dynamic Programming, the Hamilton-Jacobi-BeLLMan equation, and Pontryagin's Maximum Principle. The computing burden is low. The implementation is straightforward. Two nonlinear examples, a chemical reactor and a two tank system, are illustrating our approach. A comparison with the HEOL setting, where some expertise of the process model is needed, shows only a slight superiority of the later. A recent identification of the two tank system via a complex ANN architecture might indicate that a full modeling and the corresponding machine learning mechanism are not always necessary neither in control, nor, more generally, in AI.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.