Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 84 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Kimi K2 229 tok/s Pro
2000 character limit reached

Exploring Linear Attention Alternative for Single Image Super-Resolution (2502.00404v2)

Published 1 Feb 2025 in cs.CV and eess.IV

Abstract: Deep learning-based single-image super-resolution (SISR) technology focuses on enhancing low-resolution (LR) images into high-resolution (HR) ones. Although significant progress has been made, challenges remain in computational complexity and quality, particularly in remote sensing image processing. To address these issues, we propose our Omni-Scale RWKV Super-Resolution (OmniRWKVSR) model which presents a novel approach that combines the Receptance Weighted Key Value (RWKV) architecture with feature extraction techniques such as Visual RWKV Spatial Mixing (VRSM) and Visual RWKV Channel Mixing (VRCM), aiming to overcome the limitations of existing methods and achieve superior SISR performance. This work has proved able to provide effective solutions for high-quality image reconstruction. Under the 4x Super-Resolution tasks, compared to the MambaIR model, we achieved an average improvement of 0.26% in PSNR and 0.16% in SSIM.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.