Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 470 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

Minkowski tensors for voxelized data: robust, asymptotically unbiased estimators (2502.00092v1)

Published 31 Jan 2025 in math.ST, cond-mat.dis-nn, math.MG, math.PR, and stat.TH

Abstract: Minkowski tensors, also known as tensor valuations, provide robust $n$-point information for a wide range of random spatial structures. Local estimators for voxelized data, however, are unavoidably biased even in the limit of infinitely high resolution. Here, we substantially improve a recently proposed, asymptotically unbiased algorithm to estimate Minkowski tensors for voxelized data. Our improved algorithm is more robust and efficient. Moreover we generalize the theoretical foundations for an asymptotically bias-free estimation of the interfacial tensors to the case of finite unions of compact sets with positive reach, which is relevant for many applications like rough surfaces or composite materials. As a realistic test case, we consider, among others, random (beta) polytopes. We first derive explicit expressions of the expected Minkowski tensors, which we then compare to our simulation results. We obtain precise estimates with relative errors of a few percent for practically relevant resolutions. Finally, we apply our methods to real data of metallic grains and nanorough surfaces, and we provide an open-source python package, which works in any dimension.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube