Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Analysis of LLMs vs Human Experts in Requirements Engineering (2501.19297v2)

Published 31 Jan 2025 in cs.SE and cs.AI

Abstract: The majority of research around LLMs (LLM) application to software development has been on the subject of code generation. There is little literature on LLMs' impact on requirements engineering (RE), which deals with the process of developing and verifying the system requirements. Within RE, there is a subdiscipline of requirements elicitation, which is the practice of discovering and documenting requirements for a system from users, customers, and other stakeholders. In this analysis, we compare LLM's ability to elicit requirements of a software system, as compared to that of a human expert in a time-boxed and prompt-boxed study. We found LLM-generated requirements were evaluated as more aligned (+1.12) than human-generated requirements with a trend of being more complete (+10.2%). Conversely, we found users tended to believe that solutions they perceived as more aligned had been generated by human experts. Furthermore, while LLM-generated documents scored higher and performed at 720x the speed, their cost was, on average, only 0.06% that of a human expert. Overall, these findings indicate that LLMs will play an increasingly important role in requirements engineering by improving requirements definitions, enabling more efficient resource allocation, and reducing overall project timelines.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.