Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 29 tok/s
GPT-5 High 26 tok/s Pro
GPT-4o 98 tok/s
GPT OSS 120B 470 tok/s Pro
Kimi K2 216 tok/s Pro
2000 character limit reached

Norm-Bounded Low-Rank Adaptation (2501.19050v3)

Published 31 Jan 2025 in cs.LG

Abstract: In this work, we propose norm-bounded low-rank adaptation (NB-LoRA) for parameter-efficient fine tuning. NB-LoRA is a novel parameterization of low-rank weight adaptations that admits explicit bounds on each singular value of the adaptation matrix, which can thereby satisfy any prescribed unitarily invariant norm bound, including the Schatten norms (e.g., nuclear, Frobenius, spectral norm). The proposed parameterization is unconstrained, smooth, and complete, i.e. it covers all matrices satisfying the prescribed rank and singular-value bounds. Comparative experiments on LLMs show that NB-LoRA achieves superior adaptation performance and faster training over a range of models, tasks and ranks. Vision fine-tuning experiments show that NB-LoRA can achieve strong adaptation performance while avoiding model catastrophic forgetting, and compared to existing approaches it is substantially more robust to a hyper-parameters such as including adaptation rank, learning rate and number of training epochs.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.