Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 102 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 30 tok/s
GPT-5 High 27 tok/s Pro
GPT-4o 110 tok/s
GPT OSS 120B 475 tok/s Pro
Kimi K2 203 tok/s Pro
2000 character limit reached

Benchmarking Randomized Optimization Algorithms on Binary, Permutation, and Combinatorial Problem Landscapes (2501.17170v1)

Published 21 Jan 2025 in cs.NE, cs.AI, cs.CL, and cs.LG

Abstract: In this paper, we evaluate the performance of four randomized optimization algorithms: Randomized Hill Climbing (RHC), Simulated Annealing (SA), Genetic Algorithms (GA), and MIMIC (Mutual Information Maximizing Input Clustering), across three distinct types of problems: binary, permutation, and combinatorial. We systematically compare these algorithms using a set of benchmark fitness functions that highlight the specific challenges and requirements of each problem category. Our study analyzes each algorithm's effectiveness based on key performance metrics, including solution quality, convergence speed, computational cost, and robustness. Results show that while MIMIC and GA excel in producing high-quality solutions for binary and combinatorial problems, their computational demands vary significantly. RHC and SA, while computationally less expensive, demonstrate limited performance in complex problem landscapes. The findings offer valuable insights into the trade-offs between different optimization strategies and provide practical guidance for selecting the appropriate algorithm based on the type of problems, accuracy requirements, and computational constraints.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.