Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

AdaCoT: Rethinking Cross-Lingual Factual Reasoning through Adaptive Chain-of-Thought (2501.16154v2)

Published 27 Jan 2025 in cs.CL and cs.AI

Abstract: LLMs have shown impressive multilingual capabilities through pretraining on diverse corpora. While these models show strong reasoning abilities, their performance varies significantly across languages due to imbalanced training data distribution. Existing approaches using sample-level translation for extensive multilingual pretraining and cross-lingual tuning face scalability challenges and often fail to capture nuanced reasoning processes across languages. In this paper, we introduce AdaCoT (Adaptive Chain-of-Thought), a framework that enhances multilingual factual reasoning by dynamically routing thought processes in intermediary ``thinking languages'' before generating target-language responses. AdaCoT leverages a language-agnostic core and incorporates an adaptive, reward-based mechanism for selecting optimal reasoning pathways without requiring additional pretraining. Our comprehensive evaluation across multiple benchmarks demonstrates substantial improvements in both factual reasoning quality and cross-lingual consistency, with particularly strong performance gains in low-resource language settings. The results suggest that adaptive reasoning paths can effectively bridge the performance gap between high and low-resource languages while maintaining cultural and linguistic nuances.

Summary

We haven't generated a summary for this paper yet.