Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 100 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Harnessing CUDA-Q's MPS for Tensor Network Simulations of Large-Scale Quantum Circuits (2501.15939v1)

Published 27 Jan 2025 in quant-ph and cs.DC

Abstract: Quantum computer simulators are an indispensable tool for prototyping quantum algorithms and verifying the functioning of existing quantum computer hardware. The current largest quantum computers feature more than one thousand qubits, challenging their classical simulators. State-vector quantum simulators are challenged by the exponential increase of representable quantum states with respect to the number of qubits, making more than fifty qubits practically unfeasible. A more appealing approach for simulating quantum computers is adopting the tensor network approach, whose memory requirements fundamentally depend on the level of entanglement in the quantum circuit, and allows simulating the current largest quantum computers. This work investigates and evaluates the CUDA-Q tensor network simulators on an Nvidia Grace Hopper system, particularly the Matrix Product State (MPS) formulation. We compare the performance of the CUDA-Q state vector implementation and validate the correctness of MPS simulations. Our results highlight that tensor network-based methods provide a significant opportunity to simulate large-qubit circuits, albeit approximately. We also show that current GPU-accelerated computation cannot fully utilize GPU efficiently in the case of MPS simulations.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.