Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 94 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 28 tok/s
GPT-5 High 38 tok/s Pro
GPT-4o 100 tok/s
GPT OSS 120B 461 tok/s Pro
Kimi K2 208 tok/s Pro
2000 character limit reached

CausalSR: Structural Causal Model-Driven Super-Resolution with Counterfactual Inference (2501.15852v1)

Published 27 Jan 2025 in cs.CV

Abstract: Physical and optical factors interacting with sensor characteristics create complex image degradation patterns. Despite advances in deep learning-based super-resolution, existing methods overlook the causal nature of degradation by adopting simplistic black-box mappings. This paper formulates super-resolution using structural causal models to reason about image degradation processes. We establish a mathematical foundation that unifies principles from causal inference, deriving necessary conditions for identifying latent degradation mechanisms and corresponding propagation. We propose a novel counterfactual learning strategy that leverages semantic guidance to reason about hypothetical degradation scenarios, leading to theoretically-grounded representations that capture invariant features across different degradation conditions. The framework incorporates an adaptive intervention mechanism with provable bounds on treatment effects, allowing precise manipulation of degradation factors while maintaining semantic consistency. Through extensive empirical validation, we demonstrate that our approach achieves significant improvements over state-of-the-art methods, particularly in challenging scenarios with compound degradations. On standard benchmarks, our method consistently outperforms existing approaches by significant margins (0.86-1.21dB PSNR), while providing interpretable insights into the restoration process. The theoretical framework and empirical results demonstrate the fundamental importance of causal reasoning in understanding image restoration systems.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube