Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 40 tok/s
GPT-5 High 38 tok/s Pro
GPT-4o 101 tok/s
GPT OSS 120B 470 tok/s Pro
Kimi K2 161 tok/s Pro
2000 character limit reached

Data-efficient Performance Modeling via Pre-training (2501.14438v1)

Published 24 Jan 2025 in cs.PL, cs.DC, and cs.LG

Abstract: Performance models are essential for automatic code optimization, enabling compilers to predict the effects of code transformations on performance and guide search for optimal transformations. Building state-of-the-art performance models with deep learning, however, requires vast labeled datasets of random programs -- an expensive and time-consuming process, stretching over months. This paper introduces a self-supervised pre-training scheme with autoencoders to reduce the need for labeled data. By pre-training on a large dataset of random programs, the autoencoder learns representations of code and transformations, which are then used to embed programs for the performance model. Implemented in the Tiramisu autoscheduler, our approach improves model accuracy with less data. For example, to achieve a MAPE of 20.72%, the original model requires 18 million data points, whereas our method achieves a similar MAPE of 22.44% with only 3.6 million data points, reducing data requirements by 5x.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube