Text-to-SQL based on Large Language Models and Database Keyword Search (2501.13594v1)
Abstract: Text-to-SQL prompt strategies based on LLMs achieve remarkable performance on well-known benchmarks. However, when applied to real-world databases, their performance is significantly less than for these benchmarks, especially for Natural Language (NL) questions requiring complex filters and joins to be processed. This paper then proposes a strategy to compile NL questions into SQL queries that incorporates a dynamic few-shot examples strategy and leverages the services provided by a database keyword search (KwS) platform. The paper details how the precision and recall of the schema-linking process are improved with the help of the examples provided and the keyword-matching service that the KwS platform offers. Then, it shows how the KwS platform can be used to synthesize a view that captures the joins required to process an input NL question and thereby simplify the SQL query compilation step. The paper includes experiments with a real-world relational database to assess the performance of the proposed strategy. The experiments suggest that the strategy achieves an accuracy on the real-world relational database that surpasses state-of-the-art approaches. The paper concludes by discussing the results obtained.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.