Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 199 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Rethinking Edge Detection through Perceptual Asymmetry: The SWBCE Loss (2501.13365v2)

Published 23 Jan 2025 in cs.CV and cs.AI

Abstract: Edge detection (ED) is a fundamental component in many computer vision tasks, yet achieving both high quantitative accuracy and perceptual quality remains a significant challenge. In this paper, we propose the Symmetrization Weighted Binary Cross-Entropy (SWBCE) loss function, a novel approach that addresses this issue by leveraging the inherent asymmetry in human edge perception, where edge decisions require stronger justification than non-edge ones. By balancing label-guided and prediction-guided learning, SWBCE maintains high edge recall while effectively suppressing false positives. Extensive experiments across multiple datasets and baseline models, along with comparisons to prior loss functions, demonstrate that our method consistently improves both the quantitative metrics and perceptual quality of ED results. These findings underscore the effectiveness of SWBCE for high-quality edge prediction and its potential applicability to related vision tasks.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.