Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

A Hierarchical Reinforcement Learning Framework for Multi-UAV Combat Using Leader-Follower Strategy (2501.13132v1)

Published 22 Jan 2025 in cs.MA, cs.AI, cs.RO, cs.SY, and eess.SY

Abstract: Multi-UAV air combat is a complex task involving multiple autonomous UAVs, an evolving field in both aerospace and artificial intelligence. This paper aims to enhance adversarial performance through collaborative strategies. Previous approaches predominantly discretize the action space into predefined actions, limiting UAV maneuverability and complex strategy implementation. Others simplify the problem to 1v1 combat, neglecting the cooperative dynamics among multiple UAVs. To address the high-dimensional challenges inherent in six-degree-of-freedom space and improve cooperation, we propose a hierarchical framework utilizing the Leader-Follower Multi-Agent Proximal Policy Optimization (LFMAPPO) strategy. Specifically, the framework is structured into three levels. The top level conducts a macro-level assessment of the environment and guides execution policy. The middle level determines the angle of the desired action. The bottom level generates precise action commands for the high-dimensional action space. Moreover, we optimize the state-value functions by assigning distinct roles with the leader-follower strategy to train the top-level policy, followers estimate the leader's utility, promoting effective cooperation among agents. Additionally, the incorporation of a target selector, aligned with the UAVs' posture, assesses the threat level of targets. Finally, simulation experiments validate the effectiveness of our proposed method.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube