Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 199 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

TimeFilter: Patch-Specific Spatial-Temporal Graph Filtration for Time Series Forecasting (2501.13041v2)

Published 22 Jan 2025 in cs.LG

Abstract: Time series forecasting methods generally fall into two main categories: Channel Independent (CI) and Channel Dependent (CD) strategies. While CI overlooks important covariate relationships, CD captures all dependencies without distinction, introducing noise and reducing generalization. Recent advances in Channel Clustering (CC) aim to refine dependency modeling by grouping channels with similar characteristics and applying tailored modeling techniques. However, coarse-grained clustering struggles to capture complex, time-varying interactions effectively. To address these challenges, we propose TimeFilter, a GNN-based framework for adaptive and fine-grained dependency modeling. After constructing the graph from the input sequence, TimeFilter refines the learned spatial-temporal dependencies by filtering out irrelevant correlations while preserving the most critical ones in a patch-specific manner. Extensive experiments on 13 real-world datasets from diverse application domains demonstrate the state-of-the-art performance of TimeFilter. The code is available at https://github.com/TROUBADOUR000/TimeFilter.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube