Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 86 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 88 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Kimi K2 207 tok/s Pro
2000 character limit reached

An Empirically-grounded tool for Automatic Prompt Linting and Repair: A Case Study on Bias, Vulnerability, and Optimization in Developer Prompts (2501.12521v1)

Published 21 Jan 2025 in cs.SE and cs.AI

Abstract: The tidal wave of advancements in LLMs has led to their swift integration into application-level logic. Many software systems now use prompts to interact with these black-box models, combining natural language with dynamic values interpolated at runtime, to perform tasks ranging from sentiment analysis to question answering. Due to the programmatic and structured natural language aspects of these prompts, we refer to them as Developer Prompts. Unlike traditional software artifacts, Dev Prompts blend natural language instructions with artificial languages such as programming and markup languages, thus requiring specialized tools for analysis, distinct from classical software evaluation methods. In response to this need, we introduce PromptDoctor, a tool explicitly designed to detect and correct issues of Dev Prompts. PromptDoctor identifies and addresses problems related to bias, vulnerability, and sub-optimal performance in Dev Prompts, helping mitigate their possible harms. In our analysis of 2,173 Dev Prompts, selected as a representative sample of 40,573 Dev Prompts, we found that 3.46% contained one or more forms of bias, 10.75% were vulnerable to prompt injection attacks. Additionally, 3,310 were amenable to automated prompt optimization. To address these issues, we applied PromptDoctor to the flawed Dev Prompts we discovered. PromptDoctor de-biased 68.29% of the biased Dev Prompts, hardened 41.81% of the vulnerable Dev Prompts, and improved the performance of 37.1% sub-optimal Dev Prompts. Finally, we developed a PromptDoctor VSCode extension, enabling developers to easily enhance Dev Prompts in their existing development workflows. The data and source code for this work are available at

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.