Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 23 tok/s
GPT-5 High 19 tok/s Pro
GPT-4o 108 tok/s
GPT OSS 120B 465 tok/s Pro
Kimi K2 179 tok/s Pro
2000 character limit reached

Improving Fine-Tuning with Latent Cluster Correction (2501.11919v1)

Published 21 Jan 2025 in cs.LG

Abstract: The existence of salient semantic clusters in the latent spaces of a neural network during training strongly correlates its final accuracy on classification tasks. This paper proposes a novel fine-tuning method that boosts performance by optimising the formation of these latent clusters, using the Louvain community detection algorithm and a specifically designed clustering loss function. We present preliminary results that demonstrate the viability of this process on classical neural network architectures during fine-tuning on the CIFAR-100 dataset.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)