Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 100 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 29 tok/s
GPT-5 High 29 tok/s Pro
GPT-4o 103 tok/s
GPT OSS 120B 480 tok/s Pro
Kimi K2 215 tok/s Pro
2000 character limit reached

Dialect2SQL: A Novel Text-to-SQL Dataset for Arabic Dialects with a Focus on Moroccan Darija (2501.11498v1)

Published 20 Jan 2025 in cs.SE, cs.AI, cs.CL, and cs.DB

Abstract: The task of converting natural language questions (NLQs) into executable SQL queries, known as text-to-SQL, has gained significant interest in recent years, as it enables non-technical users to interact with relational databases. Many benchmarks, such as SPIDER and WikiSQL, have contributed to the development of new models and the evaluation of their performance. In addition, other datasets, like SEDE and BIRD, have introduced more challenges and complexities to better map real-world scenarios. However, these datasets primarily focus on high-resource languages such as English and Chinese. In this work, we introduce Dialect2SQL, the first large-scale, cross-domain text-to-SQL dataset in an Arabic dialect. It consists of 9,428 NLQ-SQL pairs across 69 databases in various domains. Along with SQL-related challenges such as long schemas, dirty values, and complex queries, our dataset also incorporates the complexities of the Moroccan dialect, which is known for its diverse source languages, numerous borrowed words, and unique expressions. This demonstrates that our dataset will be a valuable contribution to both the text-to-SQL community and the development of resources for low-resource languages.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.