Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 60 tok/s Pro
GPT-5 Medium 28 tok/s
GPT-5 High 28 tok/s Pro
GPT-4o 81 tok/s
GPT OSS 120B 453 tok/s Pro
Kimi K2 229 tok/s Pro
2000 character limit reached

Amortized Bayesian Mixture Models (2501.10229v2)

Published 17 Jan 2025 in stat.ML, cs.LG, and stat.CO

Abstract: Finite mixtures are a broad class of models useful in scenarios where observed data is generated by multiple distinct processes but without explicit information about the responsible process for each data point. Estimating Bayesian mixture models is computationally challenging due to issues such as high-dimensional posterior inference and label switching. Furthermore, traditional methods such as MCMC are applicable only if the likelihoods for each mixture component are analytically tractable. Amortized Bayesian Inference (ABI) is a simulation-based framework for estimating Bayesian models using generative neural networks. This allows the fitting of models without explicit likelihoods, and provides fast inference. ABI is therefore an attractive framework for estimating mixture models. This paper introduces a novel extension of ABI tailored to mixture models. We factorize the posterior into a distribution of the parameters and a distribution of (categorical) mixture indicators, which allows us to use a combination of generative neural networks for parameter inference, and classification networks for mixture membership identification. The proposed framework accommodates both independent and dependent mixture models, enabling filtering and smoothing. We validate and demonstrate our approach through synthetic and real-world datasets.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube