Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 92 TPS
Gemini 2.5 Pro 50 TPS Pro
GPT-5 Medium 32 TPS
GPT-5 High 30 TPS Pro
GPT-4o 67 TPS
GPT OSS 120B 452 TPS Pro
Kimi K2 190 TPS Pro
2000 character limit reached

Modeling Feature Maps for Quantum Machine Learning (2501.08205v1)

Published 14 Jan 2025 in cs.LG and cs.AI

Abstract: Quantum Machine Learning (QML) offers significant potential for complex tasks like genome sequence classification, but quantum noise on Noisy Intermediate-Scale Quantum (NISQ) devices poses practical challenges. This study systematically evaluates how various quantum noise models including dephasing, amplitude damping, depolarizing, thermal noise, bit-flip, and phase-flip affect key QML algorithms (QSVC, Peg-QSVC, QNN, VQC) and feature mapping techniques (ZFeatureMap, ZZFeatureMap, and PauliFeatureMap). Results indicate that QSVC is notably robust under noise, whereas Peg-QSVC and QNN are more sensitive, particularly to depolarizing and amplitude-damping noise. The PauliFeatureMap is especially vulnerable, highlighting difficulties in maintaining accurate classification under noisy conditions. These findings underscore the critical importance of feature map selection and noise mitigation strategies in optimizing QML for genomic classification, with promising implications for personalized medicine.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube