Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 96 TPS
Gemini 2.5 Pro 39 TPS Pro
GPT-5 Medium 36 TPS
GPT-5 High 36 TPS Pro
GPT-4o 74 TPS
GPT OSS 120B 399 TPS Pro
Kimi K2 184 TPS Pro
2000 character limit reached

Learning Robust Observable to Address Noise in Quantum Machine Learning (2409.07632v1)

Published 11 Sep 2024 in quant-ph, cs.CC, and cs.LG

Abstract: Quantum Machine Learning (QML) has emerged as a promising field that combines the power of quantum computing with the principles of machine learning. One of the significant challenges in QML is dealing with noise in quantum systems, especially in the Noisy Intermediate-Scale Quantum (NISQ) era. Noise in quantum systems can introduce errors in quantum computations and degrade the performance of quantum algorithms. In this paper, we propose a framework for learning observables that are robust against noisy channels in quantum systems. We demonstrate that it is possible to learn observables that remain invariant under the effects of noise and show that this can be achieved through a machine-learning approach. We present a toy example using a Bell state under a depolarization channel to illustrate the concept of robust observables. We then describe a machine-learning framework for learning such observables across six two-qubit quantum circuits and five noisy channels. Our results show that it is possible to learn observables that are more robust to noise than conventional observables. We discuss the implications of this finding for quantum machine learning, including potential applications in enhancing the stability of QML models in noisy environments. By developing techniques for learning robust observables, we can improve the performance and reliability of quantum machine learning models in the presence of noise, contributing to the advancement of practical QML applications in the NISQ era.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.