Self-Instruct Few-Shot Jailbreaking: Decompose the Attack into Pattern and Behavior Learning (2501.07959v2)
Abstract: Recently, several works have been conducted on jailbreaking LLMs with few-shot malicious demos. In particular, Zheng et al. focus on improving the efficiency of Few-Shot Jailbreaking (FSJ) by injecting special tokens into the demos and employing demo-level random search, known as Improved Few-Shot Jailbreaking (I-FSJ). Nevertheless, we notice that this method may still require a long context to jailbreak advanced models e.g. 32 shots of demos for Meta-Llama-3-8B-Instruct (Llama-3) \cite{llama3modelcard}. In this paper, we discuss the limitations of I-FSJ and propose Self-Instruct Few-Shot Jailbreaking (Self-Instruct-FSJ) facilitated with the demo-level greedy search. This framework decomposes the FSJ attack into pattern and behavior learning to exploit the model's vulnerabilities in a more generalized and efficient way. We conduct elaborate experiments to evaluate our method on common open-source models and compare it with baseline algorithms. Our code is available at https://github.com/iphosi/Self-Instruct-FSJ.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.