Papers
Topics
Authors
Recent
Search
2000 character limit reached

Towards the Pseudorandomness of Expander Random Walks for Read-Once ACC0 circuits

Published 13 Jan 2025 in cs.CC | (2501.07752v2)

Abstract: Expander graphs are among the most useful combinatorial objects in theoretical computer science. A line of work studies random walks on expander graphs for their pseudorandomness against various classes of test functions, including symmetric functions, read-only branching programs, permutation branching programs, and $\mathrm{AC}0$ circuits. The promising results of pseudorandomness of expander random walks against $\mathrm{AC}0$ circuits indicate a robustness of expander random walks beyond symmetric functions, motivating the question of whether expander random walks can fool more robust \emph{asymmetric} complexity classes, such as $\mathrm{ACC}0$. In this work, we make progress towards this question by considering certain two-layered circuit compositions of $\mathrm{MOD}[k]$ gates, where we show that these family of circuits are fooled by expander random walks with total variation distance error $O(\lambda)$, where $\lambda$ is the second largest eigenvalue of the underlying expander graph. For $k\geq 3$, these circuits can be highly asymmetric with complicated Fourier characters. In this context, our work takes a step in the direction of fooling more complex asymmetric circuits. Separately, drawing from the learning-theory literature, we construct an explicit threshold circuit in the circuit family $\mathrm{TC}0$, and show that it is \emph{not} fooled by expander random walk, providing an upper bound on the set of functions fooled by expander random walks.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.