Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Theoretical Characterization of Effect of Masks in Snapshot Compressive Imaging (2501.06653v1)

Published 11 Jan 2025 in cs.IT, eess.IV, math.IT, and stat.AP

Abstract: Snapshot compressive imaging (SCI) refers to the recovery of three-dimensional data cubes-such as videos or hyperspectral images-from their two-dimensional projections, which are generated by a special encoding of the data with a mask. SCI systems commonly use binary-valued masks that follow certain physical constraints. Optimizing these masks subject to these constraints is expected to improve system performance. However, prior theoretical work on SCI systems focuses solely on independently and identically distributed (i.i.d.) Gaussian masks, which do not permit such optimization. On the other hand, existing practical mask optimizations rely on computationally intensive joint optimizations that provide limited insight into the role of masks and are expected to be sub-optimal due to the non-convexity and complexity of the optimization. In this paper, we analytically characterize the performance of SCI systems employing binary masks and leverage our analysis to optimize hardware parameters. Our findings provide a comprehensive and fundamental understanding of the role of binary masks - with both independent and dependent elements - and their optimization. We also present simulation results that confirm our theoretical findings and further illuminate different aspects of mask design.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube